GIT FOrR SUBVERSION users YHIN

presented by TOWER — the best Git client for Mac and Windows

Creating a New Repository

With gitinit, an empty repository is created in the current folder of
your local hard drive. The git addcommand then marks the current
contents of your project directory for the next (and in this case:
first) commit.

$ svnadmin create /path/to/repo
$ svn import /path/to/local/project http://
example.com/svn/ trunk -m "Initial import"

$ git init GIT

$ git add .
$ git commit -m "Initial commit"

Cloning a Remote Repository

Getting a copy of the project from a remote server seems almost
identical. However, after performing git clone, you have a full-
blown local repository on your machine, not just a working copy.

$ svn checkout
svn+ssh://svn@example.com/svn/trunk

$ git clone GIT

ssh://git@example.com/path/to/git-repo.git

Inspecting History

To inspect historic commits, both systems use the log command.
Keep in mind, however, that gitlog doesn’t need to ask the remote
server for data: your project’s history is already at hand, saved in
your local repository.

$ svn log | less

$ git log e

30-day free trial available at
www.git-tower.com

Committing Local Changes

Inspecting yourcurrent local changes is very similarin both systems.

$ svn status
$ svn diff | less

$ git status GIT

$ git diff

In case you've created new files or deleted old ones, you should
tell Git with the gitadd and git rm commands. You'll be pleased to
hear that it’s safe to inform Git after deleting or moving a file or
even a folder. This means you should feel free to delete or move
even complete directory structures in your favorite editor, IDE,
or file browser and later confirm the action with the add and rm
commands.

$ svn add <file>
$ svn rm <file>

$ git add <file> GIT

$ git rm <file>

In its simplest form, committing can feel just like in Subversion.
With the -a option, you tell Git to simply add all current local
changes to the commit.

$ svn commit -m "message"

$ git commit -a -m "message" =y

Although short-circuiting Git's staging area like this can make
sense, you'll quickly begin to love it once you understand how
valuable it is:

You can add selected files to the staging area and even limit this to
certain parts (or even lines) of a file by specifying the -p option. This
allows you to craft your commits in a very granular way and only
add changes that belong to the same topic in a single commit.

$ git add <filel> <file2> GIT

$ git add -p <file3>

TOWER

The best Git Client for Mac & Windows



GIT FOR SUBVERSION USERS

Branching & Tagging

In contrast to Subversion, Git doesn’t use directories to manage
branches. Instead, it uses a more powerful and lightweight approach.
As you might have already noticed, the git status command also
informs you about which branch you are currently working on. And
in Git, you are always working on a branch!

$ svn copy http://example.com/svn/trunk/
http://example.com/svn/branches/<new-branch>

$ git branch <new-branch> GIT

To switch to a different branch and make it active (then also
referred to as the HEAD branch), the git checkout command is
used. Because switching can take some time in Subversion, it's
not unusual to instead have multiple working copies on your disk.
In Git, this would be extremely uncommon: since operations are
very fast, you only keep a single local repository on your disk.

$ svn switch
http://example.com/svn/branches/<branch>

$ git checkout <branch> GIT

Listing all available local branches just requires the git branch
command without further arguments.

$ svn list http://example.com/svn/branches/

$ git branch GIT
Creating tags is just as quick & cheap as creating branches.
$ svn copy http://example.com/svn/trunk/
http://example.com/svn/tags/<tag-name>
GIT

$ git tag -a <tag-name>

Merging Changes

Like in newer versions of SVN, you only need to provide the branch
you want to integrate to the git mergecommand.

$ svn merge -r REV1:REV2
http://example.com/svn/branches/<other-branch>

$ svn merge
http://example.com/svn/branches/<other-branch>

$ git merge <other-branch> GIT

30-day free trial available at
www.git-tower.com

Everything else is taken care of for you: you can merge two
branches as often as you like, don’t have to specify any revisions
and can expect the operation to be blazingly fast if you're merging
two local branches.

If a merge conflict should occur, Git will already update the rest
of the working copy to the new state. After resolving a conflicted
file, you can mark it using the git addcommand.

$ svn resolved <file>

$ git add <file> GIT

Sharing & Collaborating

To download & integrate new changes from a remote server, you
use the git pull command.

$ svn update

$ git pull L

If you only want to download & inspect remote changes (before
integrating them), you can use gitfetch. Later, you can integrate
the downloaded changes via git merge.

$ git fetch GIT

In Subversion, data is automatically uploaded to the central server
when committing it. In Git, however, this is a separate step. This
means you can decide for yourself if and when you want to share
your work. Once you're ready, the gitpush command will upload
the changes from your currently active branch to the remote
branch you specify.

$ git push <remote> <branch> GIT

Your teammates, too, will publish theirwork like this on a remote
(with the git push command). If you want to start working on such
a branch, you need to create your own local copy of it. You can
use thegitcheckout command with the --track option to do just
that: create a local version of the specified remote branch. You can
later share the additional commits you've made at any time with
the git pushcommand, again.

$ svn switch
http://example.com/svn/branches/<branch>

$ git checkout --track <remote>/<branch> GIT

TOWER

The best Git Client for Mac & Windows



