
GIT$ git init
$ git add .
$ git commit -m "Initial commit"

GIT$ git status
$ git diff

GIT$ git log

GIT$ git commit -a -m "message"

GIT$ git add <file1> <file2>
$ git add -p <file3>

GIT$ git clone
ssh://git@example.com/path/to/git-repo.git

GIT$ git add <file>
$ git rm <file>

SUBVERSION$ svnadmin create /path/to/repo
$ svn import /path/to/local/project http://

example.com/svn/ trunk -m "Initial import"

SUBVERSION$ svn status
$ svn diff | less

SUBVERSION$ svn log | less

SUBVERSION$ svn commit -m "message"

SUBVERSION$ svn checkout
svn+ssh://svn@example.com/svn/trunk

SUBVERSION$ svn add <file>
$ svn rm <file>

Creating a New Repository
With git init, an empty repository is created in the current folder of
your local hard drive. The git addcommand then marks the current
contents of your project directory for the next (and in this case:
first) commit.

Committing Local Changes
Inspecting your current local changes is very similar in both systems.

Inspecting History
To inspect historic commits, both systems use the log command.
Keep in mind, however, that gitlog doesn’t need to ask the remote
server for data: your project’s history is already at hand, saved in
your local repository.

In case you’ve created new files or deleted old ones, you should
tell Git with the git add and git rm commands. You’ll be pleased to
hear that it’s safe to inform Git after deleting or moving a file or
even a folder. This means you should feel free to delete or move
even complete directory structures in your favorite editor, IDE,
or file browser and later confirm the action with the add and rm|
commands.

In its simplest form, committing can feel just like in Subversion.
With the -a option, you tell Git to simply add all current local
changes to the commit.

Although short-circuiting Git’s staging area like this can make
sense, you’ll quickly begin to love it once you understand how
valuable it is:

You can add selected files to the staging area and even limit this to
certain parts (or even lines) of a file by specifying the -p option. This
allows you to craft your commits in a very granular way and only
add changes that belong to the same topic in a single commit.

Cloning a Remote Repository
Getting a copy of the project from a remote server seems almost
identical. However, after performing git clone, you have a full-
blown local repository on your machine, not just a working copy.

GIT FOR SUBVERSION USERS
presented by TOWER — the best Git client for Mac and Windows

30-day f ree t r ia l ava i lab le at
www.g i t - towe r. com The best Git Client for Mac & Windows



GIT FOR SUBVERSION USERS

30-day f ree t r ia l ava i lab le at
www.g i t - towe r. com

GIT$ git branch <new-branch>

GIT$ git merge <other-branch>

GIT$ git checkout <branch>

GIT$ git tag -a <tag-name>

GIT$ git branch

GIT$ git add <file>

GIT$ git pull

GIT$ git push <remote> <branch>

GIT$ git checkout --track <remote>/<branch>

GIT$ git fetch

SVN$ svn copy http://example.com/svn/trunk/
http://example.com/svn/branches/<new-branch>

SUBVERSION$ svn merge -r REV1:REV2
http://example.com/svn/branches/<other-branch>

$ svn merge (o r i n n ewe r S VN v e r s i o n s )

http://example.com/svn/branches/<other-branch>

SUBVERSION$ svn switch
http://example.com/svn/branches/<branch>

SVN$ svn copy http://example.com/svn/trunk/
http://example.com/svn/tags/<tag-name>

SVN$ svn list http://example.com/svn/branches/

SUBVERSION$ svn resolved <file>

SUBVERSION$ svn update

SUBVERSION$ svn switch
http://example.com/svn/branches/<branch>

Branching & Tagging
In contrast to Subversion, Git doesn’t use directories to manage
branches. Instead, it uses a more powerful and lightweight approach.
As you might have already noticed, the git status command also
informs you about which branch you are currently working on. And
in Git, you are always working on a branch!

Merging Changes
Like in newer versions of SVN, you only need to provide the branch
you want to integrate to the git mergecommand.

Sharing & Collaborating
To download & integrate new changes from a remote server, you
use the git pull command.

To switch to a different branch and make it active (then also
referred to as the HEAD branch), the git checkout command is
used. Because switching can take some time in Subversion, it’s
not unusual to instead have multiple working copies on your disk.
In Git, this would be extremely uncommon: since operations are
very fast, you only keep a single local repository on your disk.

Everything else is taken care of for you: you can merge two
branches as often as you like, don’t have to specify any revisions
and can expect the operation to be blazingly fast if you’re merging
two local branches.

If a merge conflict should occur, Git will already update the rest
of the working copy to the new state. After resolving a conflicted
file, you can mark it using the git addcommand.

If you only want to download & inspect remote changes (before
integrating them), you can use git fetch. Later, you can integrate
the downloaded changes via git merge.

In Subversion, data is automatically uploaded to the central server
when committing it. In Git, however, this is a separate step. This
means you can decide for yourself if and when you want to share
your work. Once you’re ready, the gitpush command will upload
the changes from your currently active branch to the remote
branch you specify.

Your teammates, too, will publish their work like this on a remote
(with the git push command). If you want to start working on such
a branch, you need to create your own local copy of it. You can
use thegitcheckout command with the --track option to do just
that: create a local version of the specified remote branch. You can
later share the additional commits you’ve made at any time with
the git pushcommand, again.

Listing all available local branches just requires the git branch|
command without further arguments.

Creating tags is just as quick & cheap as creating branches.

The best Git Client for Mac & Windows


