STOWER

GIT CHEAT SHEET

presented by Tower - the best Git client for Mac and Windows

CREATE

Clone an existing repository

$ git clone ssh://user@domain.com/repo.git

Create a new local repository
$ git init

LOCAL CHANGES

Changed files in your working directory

$ git status

Changes to tracked files

$ git diff

Add all current changes to the next commit

$ gitadd .

Add some changes in <file>
to the next commit

$ git add -p <file>

Commit all local changes in tracked files
$ git commit -a
Commit previously staged changes

$ git commit

Change the last commit
Don‘t amend published commits!

$ git commit --amend

COMMIT HISTORY

Show all commits, starting with newest

$ git log

Show changes over time for a specific file

$ git log -p <file>

Who changed what and when in <file>
$ git blame <file>

BRANCHES & TAGS

List all existing branches
$ git branch -av

Switch HEAD branch
$ git switch <branch>

Create a new branch based on your
current HEAD)

$ git branch <new-branch>

Create a new tracking branch based
on a remote branch

$ git checkout --track <remote/branch>

Delete a local branch

$ git branch -d <branch>

Mark the current commit with a tag

$ git tag <tag-name>

UPDATE & PUBLISH

List all currently configured remotes

$ git remote -v

Show information about a remote

$ git remote show <remote>

Add new remote repository,

named <remote>

$ git remote add <shortname> <url>
Download all changes from <remote>,
but don‘t integrate into HEAD

$ git fetch <remote>

Download changes and directly merge/
integrate into HEAD

$ git pull <remote> <branch>

Publish local changes on a remote

$ git push <remote> <branch>

Delete a branch on the remote

$ git push <remote> --delete <branch>

Publish your tags
$ git push --tags

MERGE & REBASE

Merge <branch> into your current HEAD

$ git merge <branch>

Rebase your current HEAD onto <branch>
Don‘t rebase published commits!

$ git rebase <branch>

Abort a rebase

$ git rebase --abort

Continue a rebase after resolving conflicts
$ git rebase --continue

Use your configured merge tool to solve
conflicts

$ git mergetool

Use your editor to manually solve conflicts
and (after resolving) mark file as resolved
$ git add <resolved-file>

$ git rm <resolved-file>

Discard all local changes in your
working directory

$ git reset --hard HEAD

Discard local changes in a specific file

$ git checkout HEAD <file>

Revert a commit (by producing a new
commit with contrary changes)

$ git revert <commit>

Reset your HEAD pointer to a previous com-
mit ...and discard all changes since then

$ git reset --hard <commit>

...and preserve all changes as unstaged
changes

$ git reset <commit>

...and preserve uncommitted local changes

$ git reset --keep <commit>

30-day free trial available at
www.git-tower.com

TTOWER



TTOWER

VERSION CONTROL

BEST PRACTICES

COMMIT RELATED CHANGES

A commit should be a wrapper for related
changes. For example, fixing two different

bugs should produce two separate commits.

Small commits make it easier for other
developers to understand the changes and
roll them back if something went wrong.
With tools like the staging area and the ab-
ility to stage only parts of a file, Git makes it
easy to create very granular commits.

COMMIT OFTEN

Committing often keeps your commits small
and, again, helps you commit only related
changes. Moreover, it allows you to share
your code more frequently with others. That
way it's easier for everyone to integrate
changes regularly and avoid having merge
conflicts. Having few large commits and
sharing them rarely, in contrast, makes it
hard to solve conflicts.

DON‘T COMMIT HALF-DONE WORK

You should only commit code when it's
completed. This doesn‘t mean you have

to complete a whole, large feature before
committing. Quite the contrary: split the fea-
ture's implementation into logical chunks
and remember to commit early and often.
But don‘t commit just to have something in
the repository before leaving the office

at the end of the day. If you‘re tempted

to commit just because you need a clean
working copy (to check out a branch, pull in
changes, etc.) consider using Git's «Stash»
feature instead.

TEST CODE BEFORE YOU COMMIT

Resist the temptation to commit something
that you «think» is completed. Test it tho-
roughly to make sure it really is completed
and has no side effects (as far as one can
tell). While committing half-baked things in
your local repository only requires you to
forgive yourself, having your code tested
is even more important when it comes to
pushing/sharing your code with others.

WRITE GOOD COMMIT MESSAGES

Begin your message with a short summary
of your changes (up to 50 characters as a
guideline). Separate it from the following
body by including a blank line. The body
of your message should provide detailed
answers to the following questions:

> What was the motivation for the change?
> How does it differ from the previous
implementation?

Use the imperative, present tense
(«change», not «changed» or «changes»)
to be consistent with generated messages
from commands like git merge..

VERSION CONTROL IS NOT

A BACKUP SYSTEM

Having your files backed up on a remote
server is a nice side effect of having a
version control system. But you should not
use your VCS like it was a backup system.
When doing version control, you should
pay attention to committing semantically
(see «related changes») - you shouldn‘t just
cram in files.

USE BRANCHES

Branching is one of Git's most powerful
features - and this is not by accident: quick
and easy branching was a central requi-
rement from day one. Branches are the
perfect tool to help you avoid mixing up
different lines of development. You should
use branches extensively in your develop-
ment workflows:

for new features, bug fixes, ideas...

AGREE ON A WORKFLOW

Git lets you pick from a lot of different work-
flows: long-running branches, topic bran-
ches, merge or rebase, git-flow... Which one
you choose depends on a couple of fac-
tors: your project, your overall development
and deployment workflows and (maybe
most importantly) on your and your team-
mates‘ personal preferences. However you
choose to work, just make sure to agree on
a common workflow that everyone follows.

HELP & DOCUMENTATION

Get help on the command line

$ git help <command>

FREE ONLINE RESOURCES

http://www.git-tower.com/learn

http://rogerdudler.github.io/git-guide/

http://www.qgit-scm.org/

30-day free trial available at
www.git-tower.com

TTOWER



